Space-time codes based on quaternion algebras of small volume

نویسندگان

  • Carina Alves
  • Jean-Claude Belfiore
چکیده

We have seen in [13] a new reduction method for the decoding of 2×2 algebraic space-time codes, called algebraic reduction as been introduced. Algebraic codes such that the volume of the Dirichlet’s polyhedron of its units group is small are better suited for decoding using the method of algebraic reduction. In this paper, we propose a new framework for constructing a space-time code whose algebraic reduction behaves better than the one of the Golden code. Keywords— Algebraic reduction, maximal order, cyclic division algebra, space-time codes. Resumo— Vimos em [13] um novo método de redução para a decodificação de códigos algébricos espaço-tempo 2×2, chamado redução algébrica como foi introduzido. Códigos algébricos tais que o volume do poliedro de Dirichlet do seu grupo de unidades é menor, são mais adequados para a decodificação usando o método da redução algébrica. Neste artigo, nós propomos uma nova estrutura para a construção de códigos espaço-tempo cuja redução algébrica se comporta melhor do que o código de Ouro. Palavras-Chave— Redução algébrica, ordem maximal, álgebra de divisão cı́clica, códigos espaço-tempo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DMT classification of real and quaternionic lattice codes

In this paper we consider space-time codes where the code-words are restricted to either real or quaternion matrices. We prove two separate diversity-multiplexing gain trade-off (DMT) upper bounds for such codes and provide a criterion for a lattice code to achieve these upper bounds. We also point out that lattice codes based on Q-central division algebras satisfy this optimality criterion. As...

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

Adaptive Quaternion Attitude Control of Aerodynamic Flight Control Vehicles

Conventional quaternion based methods have been extensively employed for spacecraft attitude control where the aerodynamic forces can be neglected. In the presence of aerodynamic forces, the flight attitude control is more complicated due to aerodynamic moments and inertia uncertainties. In this paper, a robust nero-adaptive quat...

متن کامل

Real Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation

Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...

متن کامل

On quaternionic functional analysis

In this article, we will show that the category of quaternion vector spaces, the category of (both one-sided and two sided) quaternion Hilbert spaces and the category of quaternion B∗-algebras are equivalent to the category of real vector spaces, the category of real Hilbert spaces and the category of real C∗-algebras respectively. We will also give a Riesz representation theorem for quaternion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012